31x^2-150^2=0

Simple and best practice solution for 31x^2-150^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 31x^2-150^2=0 equation:



31x^2-150^2=0
We add all the numbers together, and all the variables
31x^2-22500=0
a = 31; b = 0; c = -22500;
Δ = b2-4ac
Δ = 02-4·31·(-22500)
Δ = 2790000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2790000}=\sqrt{90000*31}=\sqrt{90000}*\sqrt{31}=300\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-300\sqrt{31}}{2*31}=\frac{0-300\sqrt{31}}{62} =-\frac{300\sqrt{31}}{62} =-\frac{150\sqrt{31}}{31} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+300\sqrt{31}}{2*31}=\frac{0+300\sqrt{31}}{62} =\frac{300\sqrt{31}}{62} =\frac{150\sqrt{31}}{31} $

See similar equations:

| -230.4=k(1024) | | -2=-3+11x | | (x+9)+(7x-5)+(3x)=180 | | 55=7p-8 | | s×7=77 | | 15(4+6x)=120x-24 | | 3x-119=6x-14 | | 5x+9=3x+22 | | 2x+(2x+2)-80=0 | | 90+(4x-5)+(2x+29)=180 | | 2x+(2x+2)=80 | | 2x-16=4x+11 | | (6x-8)+(5x-4)+x=180 | | 5n+5=26-2n | | 120-x=0 | | 13x-4=6- | | 6t+3=33 | | 72+6x=120-10x | | -m^2+6m=-112 | | 2(5)-3y=12 | | n/2+2=40 | | 102=4x-6 | | 20=48+5y | | 19=-2-3x | | 10-3y=12 | | -19x+15=-18x+17 | | 10x^2-78x+80=0 | | 5+55x=44x-9 | | X/2+12+2x-14+x=180 | | x=1+5/7 | | 5x+2x-20+8=0 | | 0=2(-8t^2+15 |

Equations solver categories